Part Number Hot Search : 
C1188H KDS120E DM6446 MAX3441E HC257 P3055LS G0370 PESD3V3
Product Description
Full Text Search
 

To Download MC3307806 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MC33078, MC33079 Low Noise Dual/Quad Operational Amplifiers
The MC33078/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. This family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input voltage noise with high gain bandwidth product and slew rate. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink AC frequency performance. The MC33078/9 family offers both dual and quad amplifier versions and is available in the plastic DIP and SOIC packages (P and D suffixes).
Features http://onsemi.com MARKING DIAGRAMS
DUAL PDIP-8 P SUFFIX CASE 626 1 1 8 8 1 SOIC-8 D SUFFIX CASE 751 1 QUAD 14 PDIP-14 P SUFFIX CASE 646 1 33078 ALYW G
8 MC33078P AWL YYWWG
8
* * * * * * * * * * * *
Dual Supply Operation: $5.0 V to $18 V Low Voltage Noise: 4.5 nV/ Hz Low Input Offset Voltage: 0.15 mV Low T.C. of Input Offset Voltage: 2.0 mV/C Low Total Harmonic Distortion: 0.002% High Gain Bandwidth Product: 16 MHz High Slew Rate: 7.0 V/ms High Open Loop AC Gain: 800 @ 20 kHz Excellent Frequency Stability Large Output Voltage Swing: +14.1 V/ -14.6 V ESD Diodes Provided on the Inputs Pb-Free Packages are Available
14 1
MC33079P AWLYYWWG
14 14 1 VCC Q9 A WL, L YY, Y WW, W G or G SOIC-14 D SUFFIX CASE 751A 1 MC33079DG AWLYWW
D1
R2 Q4 Q3 Q5 Pos D3 C2 Q8 Q6
Neg J1 Amplifier Biasing
R7
Q11 Q3
= Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package
D4 Q10
C3 R9 Q12 Vout
ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.
Q2 Z1 Q1
D2 R4 Q7
R6 R5
R1
C1
R3
VEE
Figure 1. Representative Schematic Diagram (Each Amplifier)
(c) Semiconductor Components Industries, LLC, 2006
October, 2006 - Rev. 7
1
Publication Order Number: MC33078/D
MC33078, MC33079
PIN CONNECTIONS
DUAL CASE 626/751 Output 1 1 2 Inputs 1 3 4 - 1 + - 2 + (Dual, Top View) 8 VCC 7 Output 2 6 Inputs 2 5
QUAD CASE 646/751A
1 2 1 3) 4 5 14
Output 1 Inputs 1 VCC Inputs 2 Output 2
Output 4 Inputs 4 VEE Inputs 3 Output 3
*
4
* ) 12
11
13
VEE
)2 6*
7
) 10 3 * 9
8
(Quad, Top View)
MAXIMUM RATINGS
Rating Supply Voltage (VCC to VEE) Input Differential Voltage Range Input Voltage Range Output Short Circuit Duration (Note 2) Maximum Junction Temperature Storage Temperature ESD Protection at any Pin MC33078 MC33079 Maximum Power Dissipation Operating Temperature Range - Human Body Model - Machine Model - Human Body Model - Machine Model Symbol VS VIDR VIR tSC TJ Tstg Vesd Value +36 Note 1 Note 1 Indefinite +150 -60 to +150 600 200 550 150 Note 2 -40 to +85 Unit V V V sec C C V
PD TA
mW C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Either or both input voltages must not exceed the magnitude of VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2).
http://onsemi.com
2
MC33078, MC33079
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25C, unless otherwise noted.)
Characteristics Input Offset Voltage (RS = 10 W, VCM = 0 V, VO = 0 V) (MC33078) TA = +25C TA = -40 to +85C (MC33079) TA = +25C TA = -40 to +85C Average Temperature Coefficient of Input Offset Voltage RS = 10 W, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25C TA = -40 to +85C Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25C TA = -40 to +85C Common Mode Input Voltage Range (DVIO = 5.0 mV, VO = 0 V) Large Signal Voltage Gain (VO = $10 V, RL = 2.0 kW) TA = +25C TA = -40 to +85C Output Voltage Swing (VID = $1.0V) RL = 600 W RL = 600 W RL = 2.0 kW RL = 2.0 kW RL = 10 kW RL = 10 kW Common Mode Rejection (Vin = 13V) Power Supply Rejection (Note 3) VCC/VEE = +15 V/ -15 V to +5.0 V/ -5.0 V Output Short Circuit Current (VID = 1.0 V, Output to Ground) Source Sink Power Supply Current (VO = 0 V, All Amplifiers) (MC33078) TA = +25C (MC33078) TA = -40 to +85C (MC33079) TA = +25C (MC33079) TA = -40 to +85C 3. Measured with VCC and VEE differentially varied simultaneously. Symbol |VIO| Min - - - - - Typ 0.15 - 0.15 - 2.0 Max 2.0 3.0 2.5 3.5 - mV/C nA - - - - 13 90 85 - - +13.2 - +13.5 - 80 80 300 - 25 - 14 110 - +10.7 -11.9 +13.8 -13.7 +14.1 -14.6 100 105 750 800 nA 150 175 - - - V VO + VO - VO + VO - VO + VO - CMR PSR ISC - - - -13.2 - -14 - - dB dB mA +15 -20 - - - - +29 -37 4.1 - 8.4 - - - mA 5.0 5.5 10 11 V dB Unit mV
DVIO/DT IIB
IIO
VICR AVOL
ID
http://onsemi.com
3
MC33078, MC33079
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25C, unless otherwise noted.)
Characteristics Slew Rate (Vin = -10 V to +10 V, RL = 2.0 kW, CL = 100 pF AV = +1.0) Gain Bandwidth Product (f = 100 kHz) Unity Gain Bandwidth (Open Loop) Gain Margin (RL = 2.0 kW) CL = 0 pF CL = 100 pF Phase Margin (RL = 2.0 kW) CL = 0 pF CL = 100 pF Channel Separation (f = 20 Hz to 20 kHz) Power Bandwidth (VO = 27 Vpp, RL = 2.0 kW, THD $ 1.0%) Total Harmonic Distortion (RL = 2.0 kW, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) Differential Input Resistance (VCM = 0 V) Differential Input Capacitance (VCM = 0 V) Equivalent Input Noise Voltage (RS = 100 W, f = 1.0 kHz) Equivalent Input Noise Current (f = 1.0 kHz) P D , MAXIMUM POWER DISSIPATION (mW) Symbol SR GBW BW Am Min 5.0 10 - - - - - - - - - - - - - Typ 7.0 16 9.0 -11 -6.0 55 40 -120 120 0.002 37 175 12 4.5 0.5 Max - - - - - Deg - - - - - - - - - - dB kHz % W kW pF nV/ Hz HzpA/ Unit V/ms MHz MHz dB
fm
CS BWp THD |ZO| Rin Cin en in 800
2400 MC33078P & MC33079P I IB , INPUT BIAS CURRENT (nA) 2000 1600 MC33079D 1200 800 400 0 -55 -40 -20 MC33078D
VCM = 0 V TA = 25C 600
400
200
0 20 40 60 80 100 120 140 160 TA, AMBIENT TEMPERATURE (C)
0
0
5.0
10 15 VCC, | VEE |, SUPPLY VOLTAGE (V)
20
Figure 2. Maximum Power Dissipation versus Temperature
1000 V IO , INPUT OFFSET VOLTAGE (mV) I IB , INPUT BIAS CURRENT (nA) 800 600 400 VCC = +15 V VEE = -15 V VCM = 0 V 2.0
Figure 3. Input Bias Current versus Supply Voltage
VCC = +15 V VEE = -15 V RS = 10 W 1.0 VCM = 0 V AV = +1 0 Unit 3
Unit 1
Unit 2
200 0 -55
-1.0
-25
0 25 50 75 TA, AMBIENT TEMPERATURE (C)
100
125
-2.0 -55
-25
0 25 50 75 TA, AMBIENT TEMPERATURE (C)
100
125
Figure 4. Input Bias Current versus Temperature
Figure 5. Input Offset Voltage versus Temperature
http://onsemi.com
4
MC33078, MC33079
VCC = +15 V VEE = -15 V TA = 25C V ICR , INPUT COMMON MODE VOLTAGE RANGE (V) 600 I IB, INPUT BIAS CURRENT (nA) 500 400 300 200 100 0 -15 VCC -0 VCC -0.5 VCC -1.0 VCC -1.5 Voltage Range VEE +1.5 VEE +1.0 VEE +0.5 VEE +0 -55 -25 -VCM +VCM VCC = +3.0 V to +15 V VEE = -3.0 V to -15 V DVIO = 5.0 mV VO = 0 V
-10
-5.0
0
5.0
10
15
0
25
50
75
100
125
VCM, COMMON MODE VOLTAGE (V)
TA, AMBIENT TEMPERATURE (C)
Figure 6. Input Bias Current versus Common Mode Voltage
Figure 7. Input Common Mode Voltage Range versus Temperature
| I SC |, OUTPUT SHORT CIRCUIT CURRENT (mA)
Vsat , OUTPUT SATURATION VOLTAGE (V)
50 Sink 40 Source VCC = +15 V VEE = -15 V RL < 100 W VID = 1.0 V
VCC -1.0 VCC -3.0 VCC -5.0
-55C 25C 125C 125C 25C -55C 0 1.0 2.0 3.0
VCC = +15 V VEE = -15 V
30
VEE +5.0 VEE +3.0 VEE +1.0
20
4.0
10 -55
-25
RL, LOAD RESISTANCE TO GROUND (kW)
0 25 50 75 TA, AMBIENT TEMPERATURE (C)
100
125
Figure 8. Output Saturation Voltage versus Load Resistance to Ground
Figure 9. Output Short Circuit Current versus Temperature
I CC , SUPPLY CURRENT (mA)
9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 -55
15 V 5.0 V
10 V
VCM = 0 V RL = VO = 0 V
CMR, COMMON MODE REJECTION (dB)
10
160 140 120 100 80 60 40 20 100 VCC = +15 V VEE = -15 V VCM = 0 V DVCM = 1.5 V TA = 25C 1.0 k 10 k 100 k f, FREQUENCY (Hz) 1.0 M 10 M
D VCM - ADM + D VCM D VO x ADM D VO
CMR = 20Log
MC33079 15 V 5.0 V 4.0 V Supply Voltages 10 V MC33078
-25
0 25 50 75 TA, AMBIENT TEMPERATURE (C)
100
125
Figure 10. Supply Current versus Temperature
Figure 11. Common Mode Rejection versus Frequency
http://onsemi.com
5
MC33078, MC33079
PSR, POWER SUPPLY REJECTION (dB)
+PSR = 20Log DVO/ADM DVCC -PSR = 20Log DVO/ADM DVCC DVCC
-
GWB, GAIN BANDWIDTH PRODUCT (MHz)
140 120 100 80 60 40 20 VCC = +15 V VEE = -15 V TA = 25C 1.0 k
30 RL = 10 kW CL = 0 pF f = 100 kHz TA = 25C
+PSR
ADM
+
20
DVO VEE
-PSR
10
0 100
0 0 5.0 10 15 20 VCC |VEE| , SUPPLY VOLTAGE (V)
10 k 100 k f, FREQUENCY (Hz)
1.0 M
10 M
Figure 12. Power Supply Rejection versus Frequency
Figure 13. Gain Bandwidth Product versus Supply Voltage
GWB, GAIN BANDWIDTH PRODUCT (MHz)
20 VO , OUTPUT VOLTAGE (Vp)
20 15 TA = 25C RL = 10 kW 10 5.0 0 -5.0 -10 -15 100 125 -20 0 RL = 10 kW VO - 5.0 10 15 VCC |VEE| , SUPPLY VOLTAGE (V) 20 RL = 2.0 kW RL = 2.0 kW VO +
15
10 VCC = +15 V VEE = -15 V f = 100 kHz RL = 10 kW CL = 0 pF -25 0 25 50 75 TA, AMBIENT TEMPERATURE (C)
5.0
0 -55
Figure 14. Gain Bandwidth Product versus Temperature
Figure 15. Maximum Output Voltage versus Supply Voltage
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
35 VO , OUTPUT VOLTAGE (Vpp ) 30 25 20 15 10 5.0 0 10 VCC = +15 V VCC = -15 V RL = 2.0 kW AV = +1.0 THD 1.0% TA = 25C 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) 1.0 M 10 M
110 RL = 2.0 kW f 10 Hz DVO = 2/3 (VCC -VEE) TA = 25C
100
90
80
0
5.0 10 15 VCC |VEE| , SUPPLY VOLTAGE (V)
20
Figure 16. Output Voltage versus Frequency
Figure 17. Open Loop Voltage Gain versus Supply Voltage
http://onsemi.com
6
MC33078, MC33079
A VOL, OPEN LOOP VOLTAGE GAIN (dB) 110 | Z O |, OUTPUT IMPEDANCE ( ) VCC = +15 V VEE = -15 V RL = 2.0 kW f 10 Hz DVO = -10 V to +10 V 50 40 VCC = +15 V VEE = -15 V VO = 0 V TA = 25C
105
30 20 10 0 1.0 k AV = 1000
100
95
AV = 100 100 k
AV = 10 1.0 M
AV = 1.0 10 M
90 -55
-25
0
25
50
75
100
125
10 k
TA, AMBIENT TEMPERATURE (C)
f, FREQUENCY (Hz)
Figure 18. Open Loop Voltage Gain versus Temperature
Figure 19. Output Impedance versus Frequency
CS, CHANNEL SEPARATION (dB)
MC33078 150 140 130 120 110 100 10 100 1.0 k f, FREQUENCY (Hz)
100 W 10 kW - + 100 W Measurement Channel VOM
MC33079
Drive Channel VCC = +15 V VEE = -15 V RL = 2.0 KW DVOD = 20 Vpp TA = 25C
THD, TOTAL HARMONIC DISTORTION (%)
160
1.0 VCC = +15 V VEE = -15 V VO = 1.0 Vrms TA = 25C
- + VO 2.0 kW
0.1
0.01
CS = 20 Log 10 k
DVOA DVOM 100 k
0.001 10 100 1.0 k f, FREQUENCY (Hz) 10 k 100 k
Figure 20. Channel Separation versus Frequency
Figure 21. Total Harmonic Distortion versus Frequency
THD, TOTAL HARMONIC DISTORTION (%)
1.0
AV = 100
RA Vin - + 10 kW VO 2.0 kW
SR, SLEW RATE (V/ s)
VCC = +15 V VEE = -15 V 0.5 f = 2.0 kHz TA = 25C 0.1 0.05 0.01 0.005 0.001
10 AV = 1000 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0
DVin - + VO 2.0 kW
Vin = 2/3 (VCC -VEE) TA = 25C
Falling Rising
AV = 10 AV = 1.0
0
1.0
2.0
3.0 4.0 5.0 6.0 7.0 VO, OUTPUT VOLTAGE (Vrms)
8.0
9.0
4
6
8 10 12 14 16 VCC |VEE| , SUPPLY VOLTAGE (V)
18
20
Figure 22. Total Harmonic Distortion versus Output Voltage
Figure 23. Slew Rate versus Supply Voltage
http://onsemi.com
7
MC33078, MC33079
VCC = +15 V VEE = -15 V DVin = 20 V Falling Rising 6.0
- VO 2.0 kW
A VOL , OPEN LOOP VOLTAGE GAIN (dB)
10
120 100 80 60 Gain 40 VCC = +15 V VEE = -15 V RL = 2.0 kW TA = 25C
0 , EXCESS PHASE (DEGREES)
SR, SLEW RATE (V/ s)
8.0
45
Phase
90
4.0
DVin
+
135 20 0 1.0 180 10 M
2.0 -55
-25
0 25 50 75 TA, AMBIENT TEMPERATURE (C)
100
125
10
100
1.0 k 10 k 100 k f, FREQUENCY (Hz)
1.0 M
Figure 24. Slew Rate versus Temperature
Figure 25. Voltage Gain and Phase versus Frequency
A m , OPEN LOOP GAIN MARGIN (dB)
14
-
0
+ 2.0 kW VO CL
100 m, PHASE MARGIN (DEGREES)
-
125C
VO CL
12 Vin 10 8.0
10 25C -55C Phase 20 30
80 os, OVERSHOOT (%) 60 40 20 0 10
DVin
+
25C -55 C
125C 6.0 4.0 2.0 0 1 VCC = +15 V VEE = -15 V VO = 0 V 10
125C
40 50
25C
-55C Gain 100
60 70 1000
VCC = +15 V VEE = -15 V DVin = 100 mV
100
1.0 k
10 k
CL, OUTPUT LOAD CAPACITANCE (pF)
CL, OUTPUT LOAD CAPACITANCE (pF)
Figure 26. Open Loop Gain Margin and Phase Margin versus Load Capacitance
e n , INPUT REFERRED NOISE VOLTAGE ( nV/ Hz ) in, INPUT REFERRED NOISE CURRENT ( pA/ Hz )
Figure 27. Overshoot versus Output Load Capacitance
100 80 50 30 20
10 VCC = +15 V VEE = -15 V TA = 25C
Vn, REFERRED NOISE VOLTAGE nV/ Hz) (
1000 VCC = +15 V VEE = -15 V f = 1.0 kHz TA = 25C Vn(total) = (inRs)2 ) en2 ) 4KTRS
100
10 8.0 5.0 3.0 2.0 1.0 10 100 1.0 k f, FREQUENCY (Hz) 10 k Voltage
10
Current 0.1 100 k
1.0 10
100
1.0 k
10 k
100 k
1.0 M
RS, SOURCE RESISTANCE (W)
Figure 28. Input Referred Noise Voltage and Current versus Frequency
Figure 29. Total Input Referred Noise Voltage versus Source Resistance
http://onsemi.com
8
MC33078, MC33079
14 12 Am, GAIN MARGIN (dB) 10
R1
70 Gain Phase
- + VO
60 50 40 30 20 10
8.0 6.0 4.0 2.0 0
R2
VCC = +15 V VEE = -15 V RT = R1 +R2 AV = +100 VO = 0 V TA = 25C 10 100 1.0 k 10 k RT, DIFFERENTIAL SOURCE RESISTANCE (W)
0 100 k
Figure 30. Phase Margin and Gain Margin versus Differential Source Resistance
V O , OUTPUT VOLTAGE (5.0 V/DIV)
VCC = +15 V VEE = -15 V AV = -1.0 RL = 2.0 kW CL = 100 pF TA = 25C
V O , OUTPUT VOLTAGE (5.0 V/DIV)
VCC = +15 V VEE = -15 V AV = +1.0 RL = 2.0 kW CL = 100 pF TA = 25C
t, TIME (2.0 ms/DIV)
t, TIME (2.0 ms/DIV)
Figure 31. Inverting Amplifier Slew Rate
Figure 32. Non-inverting Amplifier Slew Rate
VCC = +15 V VEE = -15 V RL = 2.0 kW CL = 100 pF AV = +1.0 TA = 25C
e n , INPUT NOISE VOLTAGE (100 nV/DIV)
V O , OUTPUT VOLTAGE (5.0 V/DIV)
VCC = +15 V VEE = -15 V BW = 0.1 Hz to 10 Hz TA = 25C
t, TIME (200 ms/DIV)
t, TIME (1.0 sec/DIV)
Figure 33. Non-inverting Amplifier Overshoot
Figure 34. Low Frequency Noise Voltage versus Time
http://onsemi.com
9
m , PHASE MARGIN (DEGREES)
MC33078, MC33079
0.1 mF
10 W
100 kW - 2.0 kW D.U.T. + 4.7 mF + MC33078 - 100 kW 2.2 mF 24.3 kW 0.1 mF 110 kW
1/2
4.3 kW
22 mF Scope x1 Rin = 1.0 MW
Voltage Gain = 50,000
Note: All capacitors are non-polarized.
Figure 35. Voltage Noise Test Circuit (0.1 Hz to 10 Hzp-p)
ORDERING INFORMATION
Device MC33078D MC33078DG MC33078DR2 MC33078DR2G MC33078P MC33078PG MC33079D MC33079DG MC33079DR2 MC33079DR2G MC33079P MC33079PG Package SOIC-8 SOIC-8 (Pb-Free) SOIC-8 SOIC-8 (Pb-Free) PDIP-8 PDIP-8 (Pb-Free) SOIC-14 SOIC-14 (Pb-Free) SOIC-14 SOIC-14 (Pb-Free) PDIP-14 PDIP-14 (Pb-Free) 25 Units / Rail 2500 / Tape & Reel 55 Units / Rail 50 Units / Rail 2500 / Tape & Reel 98 Units / Rail Shipping
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
http://onsemi.com
10
MC33078, MC33079
PACKAGE DIMENSIONS
PDIP-8 P SUFFIX CASE 626-05 ISSUE L
NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --- 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --- 10_ 0.030 0.040
8
5
-B-
1 4
F
NOTE 2
-A-
L
C -T-
SEATING PLANE
J N D K
M
M TA B
H
G 0.13 (0.005)
M M
http://onsemi.com
11
MC33078, MC33079
PACKAGE DIMENSIONS
SOIC-8 NB CASE 751-07 ISSUE AH
-X-
A
8 5
B
1
S
4
0.25 (0.010)
M
Y
M
-Y- G
K
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0_ 8_ 0.010 0.020 0.228 0.244
C -Z- H D 0.25 (0.010)
M SEATING PLANE
N
X 45 _
0.10 (0.004)
M
J
ZY
S
X
S
DIM A B C D G H J K M N S
SOLDERING FOOTPRINT*
1.52 0.060
7.0 0.275
4.0 0.155
0.6 0.024
1.270 0.050
SCALE 6:1 mm inches
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
12
MC33078, MC33079
PACKAGE DIMENSIONS
PDIP-14 CASE 646-06 ISSUE P
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 --- 10 _ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 --- 10 _ 0.38 1.01
14
8
B
1 7
A F N -T-
SEATING PLANE
L C
H
G
D 14 PL
K
M
J M
DIM A B C D F G H J K L M N
0.13 (0.005)
http://onsemi.com
13
MC33078, MC33079
SOIC-14 CASE 751A-03 ISSUE H
-A-
14 8
-B-
P 7 PL 0.25 (0.010)
M
B
M
1
7
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
G C -T-
SEATING PLANE
R X 45 _
F
D 14 PL 0.25 (0.010)
K
M
M
S
J
TB
A
S
DIM A B C D F G J K M P R
MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50
INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019
SOLDERING FOOTPRINT*
7X
7.04 1 0.58
14X
14X
1.52
1.27 PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative
http://onsemi.com
14
MC33078/D


▲Up To Search▲   

 
Price & Availability of MC3307806

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X